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$ Department of Physics, Jiaotong University of Shanghai, Shanghai, The People's Republic 
of China 
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Abstract. In the SU(3) and SU(4) Yang-Mills theories in four-dimensional Euclidean 
space, there are no spherically symmetric instanton and meron solutions which belong to 
the full SU(3) or SU(4) algebra. 

1. Introduction 

The method of the phase factor of the standard differential loop (Gu 1981) is effective 
for studying spherically symmetric Yang-Mills theory. In terms of this method, we 
obtained all the possible asymptotic forms of SU(N)  monopole solutions (Ma 1984) 
including reducible and irreducible ones. A solution is said to be reducible if it can 
be transformed by a gauge transformation into one which belongs to a Lie subalgebra. 
An irreducible solution belongs to the full Lie algebra. It is also in terms of this method 
that the general form of the SU(N) spherically symmetric gauge potential in four- 
dimensional Euclidean space is obtained (Ma and Xu 1984) as followsI/ 

R,,W,(R-'x) = 9 ( R - ' )  W , ( x ) 9 ( R ) ,  (1) 
where R denotes a 4-rotation matrix and 9 ( R )  an N-dimensional representation of 
rotation group in four-dimensional Euclidean space (SO(4) groups). However, in the 
previous papers (Ma and Xu 1984), we use the generators of 9 ( R )  to form the gauge 
potential W , ( x )  so that only SO(4) embedding instanton and meron solutions were 
obtained. They are reducible ones. As we know, the irreducible cylindrically symmetric 
instanton solutions have been found in SU(3) Yang-Mills theory several years ago 
(Witten 1977, Bais and Weldon 1978). Do there exist any irreducible spherically 
symmetric instanton or meron solutions in SU(3) and SU(4) Yang-Mills theory? In 
this paper, we look for those irreducible solutions. Surprisingly enough, there are none 
of those solutions at all. 

2. Spherically symmetric condition 

In the central gauge (Gu 1981) a spherically symmetric gauge potential satisfies (1) 

5 0 n  leave from the Institute of High Energy Physics, Beijing, China. 
/ / In  this paper, the repeated ,U, v .  . . denotes summation of 1 , 2 , 3  and 4 and the repeated a, p . . . summation 
of 1, 2, 3. 
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1316 Zhong-Qi Ma and Bo- Wei X u  

and the consistent conditions 

w, (0) = 0, x ,  W,(X) = 0. ( 2 )  

9 ( R )  =C%jk(R) ,  (3)  

Through a similarity transformation, the representation 9 ( R )  of the SO(4) group can 
be expressed as a direct sum of the irreducible ones 9 J k ( R )  

j k  

where an additional index should be added if an irreducible representation appears 
more than once. In this paper, we do not restrict ourselves to form the gauge potential 
W,(x)  by the generators of 9 ( R ) ,  so the direct product form is not needed (see P 4). 
Note that the irreducibility of 9 ( R )  and that of the gauge potential W,(x)  are different 
things because W,(x)  need not have the same type of block matrix as 9 ( R )  has. 

For any point x in the four-dimensional space, there exists a rotation R (not unique, 
see equations ( 1 8 ) - ( 2 0 ) )  to turn x into the fourth axis: 

xo= Rx, xo = (O,O,  0, r ) ,  

r = ( x : +  x:+ x : + x : ) 1 ’ 2 .  

From ( l ) ,  it follows that 

W,(x)  = W,(R-’x0) = 9 ( R - ’ )  Wv(xo)R, ,9(R) ,  ( 6 )  
i.e. the spherically symmetric gauge potential W,(x)  at any point x can be expressed 
by the potential W,(xo) at the fourth axis. Furthermore, if one restricts the rotation 
R to be Ro in ( 6 )  to keep the fourth axis invariant, Ri1x0 = xo, i.e. Ro is a rotation of 
the first three-dimensional space, ( 6 )  gives the relations among the different components 
of W,(xo).  We are going to discover these relations. 

As we know, the generator I f v  of the irreducible representation 9 j k ( k )  can be 
expressed as follows: 

it4 = L j k  - K j k  I$ = caPy( L,! + K,!), a 00 

(7) Lj,” = I’, X 1 2 k + l ,  K’,k = I 2 j + l  X I , ,  k 
where I{ denotes the generator of the representation g J ( S U ( 2 ) )  

and U, denotes a n x n unit matrix. 9 1 k  is a ( 2 j +  1 ) ( 2 k +  1 )  x ( 2 j +  1 ) ( 2 k +  1 )  matrix and 
its row or column can be denoted by two indices a and b. Thus, the rows or columns 
of representation 9 ( R )  and gauge potential W,(x)  can be denoted by four indices j ,  
k, a, b: 

a = j , j - 1 ,  . . . ,  - j ,  

b = k, k - 1 , .  . . , -k .  
In terms of the explicit form of the generators of Ro and 9 ( R o ) ,  where Ro is the 
rotation in the first three-dimensional space, those relations are obtained as follows: 

wl( X O )  jkob ; j k 6  = [ ( 6 + 6) - ( a + b ) 1’ wl ( x O )  jkab ; jici6, 

W , ( X O ) j k o b ; F k b = i [ ( d + 6 ) - ( a +  b)1W1(XO)jkab;7k6;ri6, 
( l o a )  

[ ( d + 6) - ( U + b ) ] W, ( x O )  j k a b , ~ h 6  = 0,  
[ ( d + 6) - ( a + b ) I  W4( X O )  jkob,Fk& = 0,  
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The consistency condition (2) requires 
W4(~0)  = O .  

It is obvious that the components with the subscripts such that ( j  + k) - ( J +  E )  is equal 
to half of an odd integer must vanish. 

The gauge field strength 

satisfies the similar spherically symmetric condition when a rotation R is carried out: 

R,,RVA Gph ( R - ’ X )  = 9 ( R - I )  G,, ( x  19 ( R 1, 

G,,W = G , , ( R - ~ ~ , )  = ~ ( R - I ) G , ~ ( X ~ ) R , , R ~ ~ ~ ( R ) .  

(12a) 

(12b) 

Rectricting R to be Ro to keep the fourth axis invariant, we get the relations satisfied 
by the components of G,+”(x0). It is seen that the relations satisfied by G23(xO), G 3 1 ( ~ O )  
and Gt2(xo)  are the same as those satisfied by W l ( x o ) ,  W2(xo) and W3(~0) ,  as do 

and from (4) 

G 1 4 ( X O ) ,  G24(x0) and G34(x0)*  

Let us discuss two simple examples. If 9(R) = 9 j 0 ( R ) ,  k = E =  b = 6= 0, the 
subscripts j = 7 can be omitted and (1Oc) becomes 

2 c i 2 + j -  0 ’ -  1) w 3 ( x o ) o o  = ( j + a +  1Nj-a)  w 3 ( x O ) ( ~ + l ) ( o + i )  

+ ( j + a ) ( j - a  + l )  W 3 ( X 0 ) ( o - l ) ( a - l ) ~  

The solution of this is 

W 3 ( X O ) r r b  = a o b ( a / j )  w3(x0),y 

There is only one parameter W3(xo),j/j= c. From (lo) ,  we obtain 

W a ( X O ) o h  = c I k ,  a = 1,2,3,  

W4(XO)ab  = O. 
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Therefore 

W,( X )  = W, ( R - ’ x O )  = c 9  (R-’)Z;R,,9 ( R ) .  

W ( x )  belongs to the SU(2) subalgebra. In SU(3) gauge theory 9 ( R )  may be 3ao0(R),  
9&@ goo( 9 0 t 0  9”) and 9lo( BO1). The first case is topologically trivial; in the second 
case, the solution must be the SU(2) embedding one because the components belonging 
to the different representations must be zero; and now we have shown that in the last 
case, the spherically symmetric solution must be the SU(2) embedding one. There are 
no irreducible spherically symmetric instanton and meron solutions in the SU(3) 
Yang-Mills theory. 

The second example is that B ( R )  =E,@ 9’’(R). We discuss the off-diagonal com- 
ponents with different j .  From (~OC), we get ( k  = E =  0 have been omitted) 

[ j ( j + 1 > + J ( J + 1 ) - 2 ~ ~ - 2 I ~ 3 ( x o ) , , ~ ~  

= r-b + 1 rJ,+ I w3(x0) , (0  + 1 1,yi a+ I 1 + rhrb w3 ( X O ) , (  (1 - 1 ,,Ti (1 - 1 1. 

Obviously, j and J must be integer or half-integer simultaneously. If Y= 3 we obtain 

[ j G +  1) - 3  w3(x0),4,74 = ( j + t )  w 3 ( x 0 ) , - 4 . J - 4 3  

[ j ( j  + 1) -2  W3(X0),-t,7-t = ( j  + t )  W 3 ( x 0 ) , f ~ $ *  

j = t  or j , r  2.  (14) 

The non-vanishing solution corresponds to 

In the case 9610@9ato, wa(xo),(l,Jb = c,J(i(+m)ob which can be diagonalised into the 
block matrix by a global gauge transformation keeping 9( R )  invariant; therefore, it 
is an SU(2) embedding one. 9$o@9i10 will appear in SU(6) gauge theory. One can 
obtain the same result if some or all 9’’ in 9 are replaced by Bok. In SU(4) gauge 
theory, there are two cases a( R )  = R )  and 9( R )  = 9 l 0 ( R ) O  aoo( R )  where irreduc- 
ible solutions may exist. 9 ( R )  = 9”(R)O BaOO(R) is a similar case to the latter. We 
will discuss them in the following two sections respectively. 

3. f214 case in SU(4) gauge theory 

First, let us introduce the spherical coordinates in four-dimensional space, 

x 1  = rs1czs3, x2 = rs1s2s3,  x3 = rc1s3,  x4 = rc3, (15) 
where 

s1 = sin 0, 

c1 = COS e, 
s2 = sin Q, 

c2 = cos Q, 

s3 = sin $, 

c3 = cos *. (16) 

The unit vectors in the rectangular and spherical coordinates are related as follows: 

e^= PI = c 1 c ~ x * 1 + c , s ~ 2 2 - s 1 2 3 ,  

6.. F3= s lc2c~21+sls*c~2*+c~c~x*~-s324,  

A A  

Q = r2 = -s& + c22,, 

A A  r =  r 4 = s 1 ~ 2 ~ 3 ~ I + ~ , ~ 2 ~ 3 2 2 + ~ , ~ 3 ~ 3 + ~ 3 ~ 4 ,  
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where R P Y ( a )  denotes the rotation with angle a along the (pv) plane. R satisfies the 
following formulae 

A A  2 R E R - ' ~  = *  , 
(19) 

(20) 

Rr, = x,, Ir rw 

R,LL = t,, 
x = x,x, = rr,, 

Rx = rR?, = &, = xo, 

t,RPv = im 
xo = rx4, 

A A 

i.e. this R satisfies (4). It is standard practice to obtain the formulae for the vectorial 
derivative 

A aS(x)  A 1 a s ( x )  
ax, H, ar,  

X,- - - r,--, 

where 

HI = rs3, H2 = rsls3, H3 = r, H4= 1. (22) 

l a p  = ~ a p y ( L y + K y ) ,  

The generators of 9d'd'(~) are 

Ia 4 = La - Ka, 
(23) 

La =;Ua xu2 ,  
Now we introduce the bases of matrices 

K ,  = U 2  x fwa. 

3 

& =  ua x ua. 
, = I  

- -  
Since j = k = j = k = f for ghi( R ) ,  we may omit the subscripts j ,  k, and E and use * 
to denote the values of a and b. Now, the independent equalities from (1Oc) are as 
follows : 

w 3 ( x 0 ) - + - + +  w3(x0)+-+- = 0, 

w3(x0)-++-+ w3(x0)+--+ = 0,  

w3(x0)+++++ w3(x0)---- = 0. 
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That means 

W3(~0) = AZ34+ B1,2+ CZ3, 

and from (10) 

Wl(xo)=AZ14+B123+ CZI, 

W2( xO) = A124 + BZ3l + CZ2. 

Similarly, 

w4(x0) = D Z O ,  

where A, B, C and D are the functions of xo = r. Obviously, D = 0 because of the 
consistent condition ( 2 ) .  In order to separate the angular part from the radial one, 
we introduce the following bases for the vectors 

V'(X0) = 2 J U 4 ,  V2(Xo) = tE ,p$ , lp r  

where R is defined in (18). The explicit forms of V"(x) can be calculated easily. 
Now, the gauge potential W,(x) can be expressed as 

w,(x)?, = r+l(r)V'(x)+r42(r)~2(x)+r+3(r)~3(x). ( 2 7 )  

In order to express the gauge field strength G,,(x), we introduce the bases for 
antisymmetric tensors 

When one calculates G,,(x) and substitutes them into the Yang-Mills equation 

aG,,(x)lax, -ie( W,(x)G,,(x) - GWY(x) W,(x)) = 0 ( 2 9 )  
it is easier to calculate the commutators at the fourth axis and the derivative near the 
fourth axis (after derivative, let 4 tend to zero). Through the straightforward calcula- 
tion, we obtain 

G,Jx)2& =2q52(-1+ed,r2)T'o+[-241+er2(q5~+q5~+q5~)]T20 

3 1 d  + 2er2d2q53T30 - (7 & r'd,)P",  
U=' 
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and 

2~&1+6$1 + e(34:+34:+ 4:)- e2T41(4:+3&+ 4:)=0, 

2 ~ 4 ~  + 642 + 6e4, 42 - e2.C#J2( 34; + 4; + 34:) = 0, 

2 7 4 3  -k 613 (21 7 )  43 2e4143 - e2T43( C#Ji + 3 4; + 4;) = 0, 

eTd361- e741 & 3 +  6 3 +  (1/T) 43 = 0, 

(31a) 

(31b) 

(31c) 

(31d) 
where a dot denotes the derivative with respect to T = r2. 

If 43 = 0, W,(x) reduces to the SO(4) embedding one discussed previously (Ma 
and Xu 1984). Now, we are interested in the solutions with 4 3 # 0 .  From (31d), we 
obtain 

43 = c1(41 - 1/eT). (32) 

Substituting into (31c), (31c) becomes the same as (31a). Now, we have to solve 
the three-coupled differential equations (31a), (31b) and (32). If 41 and &were finite 
near the origin, 43 - l / e r  and (31a) and (31b) could not be satisfied. Therefore, there 
are no spherically symmetric irreducible instanton solutions in the SU(4) gauge theory. 
According to the forms of the equations, we are going to look for the meron solutions 
in the following form: 

41 = A/ e7, 42 = BI er, 43 = c/ er, (33) 

c=o if A =  1. (34) 

where A, B and C are constants, and 

Now, equations (31a) and (316) become 

(A - 1)[A(2 - A )  - 3B2 - C'] =O, 
and 

B(-2+6A -3A2 - B2 - 3C2) = 0. 

If BZO, we have 
BZ = f ,  C ' = f - ( A - l ) .  2 

If B = 0, we have 

C 2 = 1 - ( A - 1 ) 2 .  

Therefore, we obtain the following SU(4) meron solutions 

(35) 

1 
w,(x)?, =-( er V ' (X)+COS wV'(x)+sin wv3(x))  --.rr<wd-.rr. (37b) 

Since the meron solutions are singular at the origin, we have to check whether they 
are gauge equivalent to the reducible ones through some gauge transformations which 
may be singular at the origin. 

It is easy to check that 
exp ( f i  w ) 

exp(-&)(cos Sw +iu ,  sin tu) ) (38) 
exp(fiw) 

u,(w) = exp(fiwZ,) = 
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and 
u o ( ~ ) r u & J o ( w ) - '  = rup, 
U0(~)1~4Uo(w)-' =cos wI04-sin U&, a = 1,2,3. (39) 

Uo(w)~uUo(w)'- '  =sin wI,,+cos w Z u ,  

Define a gauge transformation which is singular at the origin: 

U ( w )  = 9 - ' ( R ) U o ( w ) 9 ( R ) ,  (40) 

U(w)v2(x)U(w)- '= V2(X), 

U ( W ) V ' ( X ) U ( W ) - ' = C O S  wV'(x)-sin wv3(x),  

~ ( w )  v3(x)  u(w)-' = sin W V ' (  a )  + cos wv3(x),  

where R is defined in (18) and 9 = gtt. It follows that 

and 
U(W)[COS wV'(x)+sin wv3(x)] U ( w ) - ' z  V'(x). 

In terms of the formulae 

9 ( R )  = 9 ( 1 3 4 ,  - $ ) 9 ( 1 3 1 ,  ~ ) 9 ( ~ ' * ,  91, 

9q R )  = 94@( R )  x got( R ) ,  

[ ( a la@)9(1 , ,  @)19(1,,-e) = ir,, (no  summation of p, v )  (42) 

we obtain 

(43) 
1 1 
e er 

- - [a,  U( w ) ]  U (  w )-'i, = -[ (1 - cos w ) ~ ' ( x )  + sin w v3(x)]. 

Therefore, under the gauge transformation, the solutions (37a,b) become 

3 1 
2 er 2 er 

W,(X)-;, +-v'(x)*-v*(x), 

2 
er 

W , ( x ) i ,  + - V ' ( X ) .  

Obviously, they are the SO(4) embedding solutions (Ma and Xu 1984). In fact, the 
term r43( r )  V3(x) in that solution (33) can be removed by the singular gauge transforma- 
tion U ( w ) :  

W,(x)& + -{[A cos w + C sin w + (1 - cos w ) ]  V'(x) 
1 
er 

+BV2(x)+(-Asinw-tC cosw+sinw)V3(x>} 

where w is chosen to satisfy 

-A sin w + C cos w +sin w = 0. 

Therefore, those types of meron solutions are the SO(4) embedding ones if the singular 
gauge transformation U( w )  is allowable. 

4. 9'o09w case in SU(4) gauge theory 

Now, we turn to the case of 9 ( R )  = 9 ' o ( R ) @ 9 0 0 ( R ) .  The row and column can be 
denoted by 1, 0, -1 and 6; the last 6 belongs to the representation go0(R) .  From 
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and there is no restriction for W3(xo)m. Therefore 

\ O  B - i C  0 0 

1 0 A 0 -B- iC\  

\ -B+iC 0 B-IC 0 / 
0 -iA 0 

0 
0 -iA 

- iB-C 0 

We introduce the bases of matrices 

0 1 0 0  

0 0 0 0  

0 0 0 - 1  O O O i  

(45) 

J3 = 

L3 = 

1 0  0 0 
0 0  

0 0  0 0 
0 0 :1 

0 0  0 -i 0 0 0 - 1  

K o 0 '1, i K 2-4 -'io 0 0 0 :1), K3= 

0 -i 0 -1 0 -1 0-100 

1 0 0  0 

J-L[: 4-&0 0 : 1 0 '  
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They satisfy the following commutative relations 

LJa, Jpl = CL,, '01 = L K , 9  = iEQpJp 

JO1 = iEQpyLV [Kn, Jp 1 = i Eu&y 

The generators of g'O(R) are 

112 = 134 = 5 3 ,  123=114=J1?  1 3 1  = Z24= 52. 

According to (45), the bases for vectors are 

V1(Xo)  V2(Xo) = <,L,, 

V3( xo) = <, Ku, v4( xo) = < 4 ~ 4 r  

and 

V ' ( X )  = Fm9(R-')J,9(R) = F,RmpJp, 

V'(X) = ?,9(R-1)La9(R) = F,RapLp, 

V"x) = F 4 9 ( K 1 ) J 4 9 ( R )  = FJ4, 

V3(x) = t a 9 ( K 1 ) K , 9 ( R )  = Fa&&, 

where R is defined in (18) and 

- [ c l c 2 ~ ~ ~ s 2 s 3  c1s2c3-c2s3 - s 1 c 3  

R = c I c ~ s ~ - s ~ c ~  c , s ~ s ~ + c ~ c ~  - s I s ~  

SlSZ C1 

Thus, the general form of the gauge potential with 9 = a''@ 9'' can be expressed as 

W @ ( X ) $ ~  = r41(r)V1(x)+ r 4 2 ( r ) ~ 2 ( x ) +  rd3(r)v3(x) .  (51) 

The gauge field strength is 

G,,(X)E,$~ = [ -24 ,  + e ( 4 : +  c$:+ ~ : ) ] T 1 0 + ( - 2 4 2 + 2 e r 2 ~ l ~ 2 ) T 2 0  

I d  
a = l  rdr 

+ (-2rf~~ + 2 er241 43)T30 - (- - r24,)pa 

(53) 

where the bases T for the antisymmetric tensors are as follows: 

T"(x) = E , ~ , F ~ F ~ ~ ( R - ' ) J , ~ ( R )  = E , ~ ~ ? , F ' R ~ ~ J S ,  

P y x )  = (Fa?'$- F4F,)9(R-1)5a9(R) = (Fn?4- F4?,)RmpJfi, 

TO2(x)=(E,F4- F4F,)RapLp, P3(x)=(iaF4- F4?,)Rap&. 
TZo( x) = E ~ ~ ~ ? ~ F ~ R ~ ~ L ~ ,  T30(x) = E , ~ ~ F , F ~ R ~ ~ K ~ ,  

Substituting them into the Yang-Mills equation (29), we get 

27& + 6 4 ,  + 3e(4:+ 4:+ 4;)  - e27d1( 4:+34;+34:) = 0, 

27&+ 642 + 6e414, - e27&(34: + 4;+ 4:) = 0, 

2 ~ 6 ~  + 643 + 6ed1 43 - e27b3(3 4: + 4; + 4;)  = 0, 
(54) 

4.243 = 4 3 4 2 9  
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where a dot denotes the derivatives with respect to T = r2 .  From the fourth equation, 
we get 

and then the second equation is not independent of the third one. Generally, taking 
c =tan w, we introduce 

43 = ( 3 2 ,  ( 5 5 )  

43r) = 4 % r ) + 4 3 r ) .  (57) 

2 ~ & + 6 & + 3 e ( 4 : +  4:) - e2741(4:+34:) = 0, 

They satisfy the following equation 

( 5 8 )  
2 ~ 4 ~  + 664 + 6e4 ,  44 - e 2 ~ 4 4 (  3 4; + 4:) = 0. 

This is the equation which we discussed previously where we obtained the instanton 
and meron solutions 

and 

41 * 44 = M*/ M,=O, 1,2 .  (59b) 

;,w,(x) = r 4 1 ( r ) V ’ ( x ) +  r+,(r)(cos w V 2 ( x ) + s i n  w v 3 ( x ) > ,  (60) 

x - ’ [ f ( J +  L ’ ) ] X  = fo x 112, 

x - I [ f ( ~  - L ~ X  = n 2  x $U, 

However, all these solutions are SO(4) embedding solutions because 

where V ’ ( x )  and (cos w V 2 ( x ) + s i n  w V ’ ( x ) )  are the linear combinations of the six 
matrices J and L ‘ =  (cos wL+sin w K )  which belong to the SO(4) subalgebra. In fact, 

(61) 

where 

e i w / 2  ’ 

0 

(62) 

(63) 

i.e. W , ( x )  is equivalent to the combination of two SU(2) instanton or meron solutions. 
In summary, we have looked for the irreducible spherically symmetric instanton 

and meron solutions. It is very surprising to us that there are no irreducible spherically 
symmetric instanton and meron solutions in SU(3) and SU(4) Yang-Mills theories at 
all, even though the irreducible cylindrically symmetric instanton solutions have been 
found in SU(3) Yang-Mills theory. 

9 x = [  0 0 0 

0 0 e iw/2  

o (1/Jz) eiW’* (1/J5) eiw’2 

o (I/&!) (-1/Jz) 
Under this global gauge transformation X ,  

X - l (  91°@ 9O”x = 9 t o  x 9 4 0 ,  

x-’  w p ( x ) x  = r(41(r)+ 44(r)) v + ( x ) +  r ( d l ( r )  - 4 4 ( r ) ) v - ( x ) ,  

V + ( X )  = ;~[~40(R-’)fam~40(R)] x 112= ;mRmp($afi XI,), 
V - ( x )  =U,X ; m [ ~ ~ o ( ( R - ’ ) t a , ~ ~ o ( R ) ]  = ; m ~ , p ( U 2 ~ ~ a p ) ,  
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